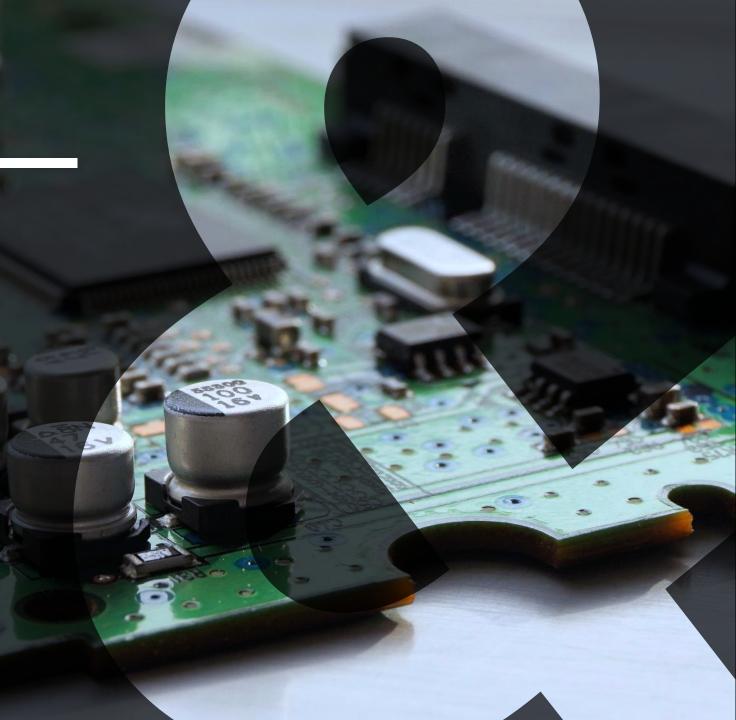

strategy&
Part of the PwC network

Semicon wide-bandgap and packaging innovation analysis

27th July 2023



Dr. Klaus Illgner

In this viewpoint we analyzed semiconductor wide-bandgap manufacturing and semiconductor packaging patents

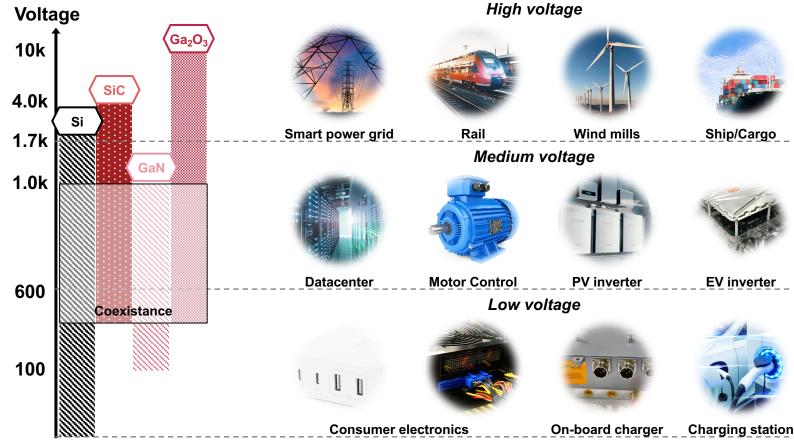
Methodology for semiconductor wide-bandgap (WBG) and packaging innovation analysis

For our analysis, we first selected relevant semiconductor technology areas:

Wide-bandgap substrates for semiconductor manufacturing (frontend), and semiconductor packaging for all applications (back-end).

We subdivided these Categories into specific technology fields of interest and then acquired the corresponding data through professional patent search in global databases. Despite restricting to activities in the last 10 years, the resulting datasets cover more than 60,000 resulting patent applications grouped into almost 34,000 new patent families.

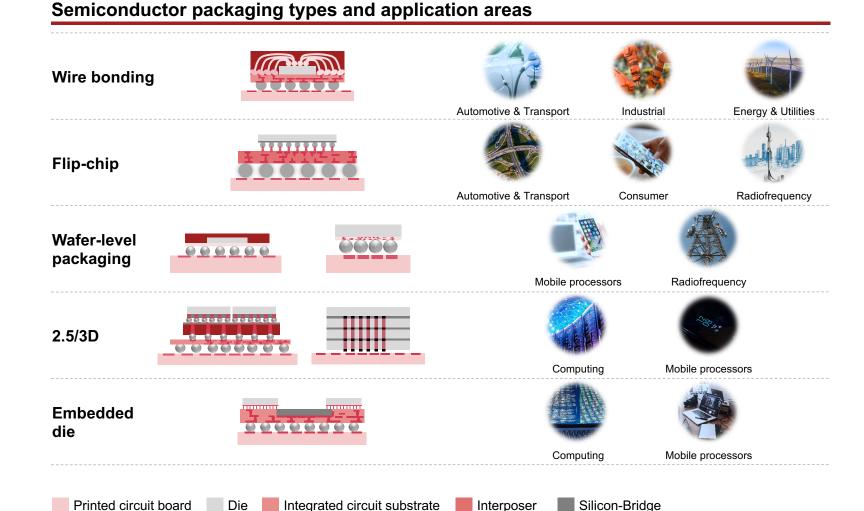
Finally, we used the PATEV Innovation Intelligence system to prepare the vast amount of data for evaluation and interpretation. With the interactive evaluation, data can be presented from different perspectives, such as regional trends, dynamics of applicants, and shifts in technology focus.


Wide-bandgap power devices allow for higher voltages and temperatures, improved efficiency, and reduced energy loss

Overview of analyzed technologies (I/II) – Wide-bandgap materials

Wide-bandgap power devices

- Wide-bandgap materials, such as SiC or GaN possess a larger bandgap compared to Silicon
- The wider bandgap allows for higher breakdown voltages, enabling power devices with lower on-resistance, leading to reduced power losses and better efficiency
- Moreover, their superior thermal conductivity, enables higher power densities and an enhanced overall performance
- With an even bigger bandgap, Ga₂O₃ may be the next promising material for efficient power applications

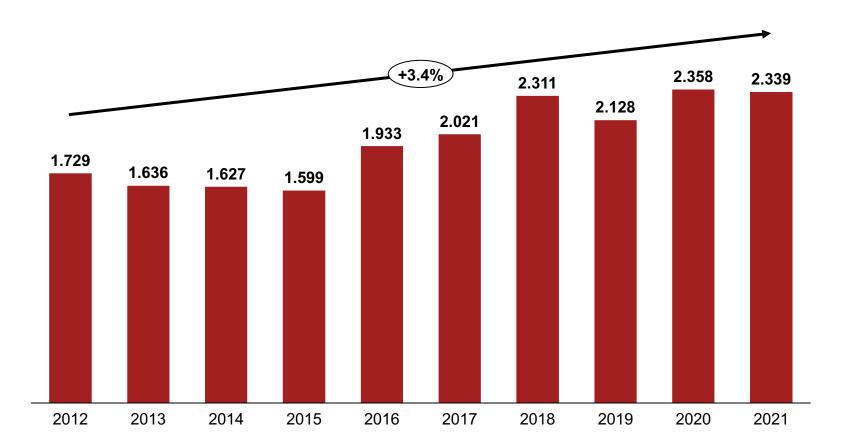


Semiconductor packaging (back-end) technologies are rapidly evolving driven by demand for smaller and efficient packages

Overview of analyzed technologies (II/II) – Semiconductor packaging

Wide-bandgap power devices

- Semiconductor packaging refers to the process of enclosing and protecting semiconductor chips within a housing, enabling their integration into electronic systems
- Back-end technologies are rapidly evolving and increasing in valueadd, driven by the demand for smaller, more efficient packages with an increasing number of functionalities
- Advanced packaging techniques are becoming increasingly important for further miniaturization, particularly as die sizes continue to grow

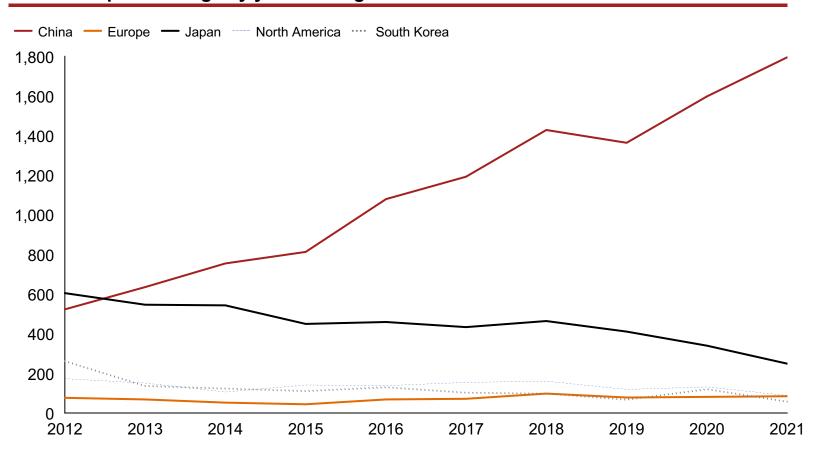

Summary of hypotheses for semiconductor wide-bandgap (front-end) and packaging (back-end) packaging innovation

- Patents fillings for WBG semicons grown at 3.4% since 2012
- China dominates the number of publications for WBG
- 3 Strongly growing interest in Ga₂O₃ substrates
- Japanese IDMs at the top of patent filings for SiC & GaN
- High impact research from IDMs with focus on automotive
- 6 Packaging patents growing strongly with ~17% since 2015
- Top Asian Foundries and OSATs far ahead in patent volumes
- 8 Western IDMs and foundries innovation drivers in packaging

The number of filled patents in Semicon WBG reached ~2,300 in 2021, growing at a CAGR of ~3.4% since 2012

1 Development of WBG related patent filings

Number of WBG patent filings by year

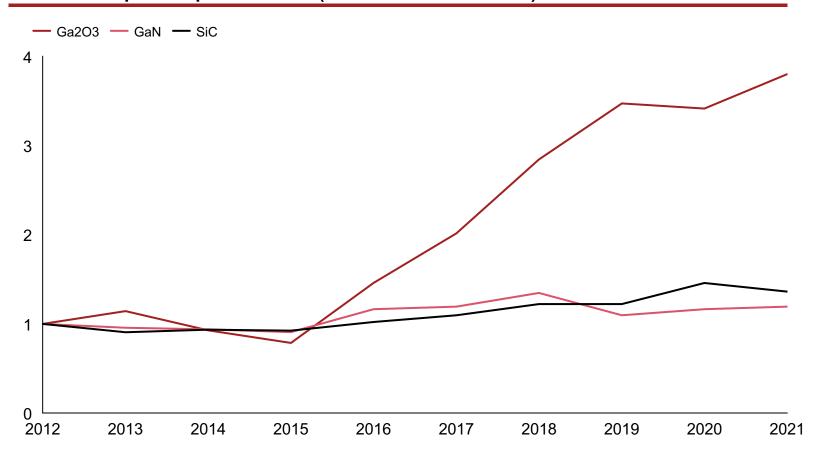


- Increasing need for efficient power semiconductors driving innovation in WBG
- Over the last 8 years, WBGrelated patent filings grown moderately, reaching an alltime high of 2,300 despite the Covid-19 pandemic
- Between 2012 and 2015 a slight decline can be observed, indicating uncertainty in the field
- After 2016, patent filings significantly increased as the SiC technology overcame commercial barriers and first modules were introduced

Gap of WBG patent filings between China and the other regions increasing significantly since 2013

2 Development of WBG related patent filings by region

Number of patent filings by year and region



- China dominated the number of patent filings for WBG semicons growing significantly since 2012
- In 2020, China accounted for 70% of WBG patents led by research institutes and universities
- In contrast, in other regions such as Japan, Europe and North America, patents fluctuate around a constant level or even face declines
- Despite the imbalance
 Western and Japanese
 players have a strong
 position in the WBG market

In contrast to SiC and GaN, Ga₂O₃ patents experienced a strong uptake after 2015 reaching 3-4 times the level of 2012

3 Development of WBG related patent filings by substrate

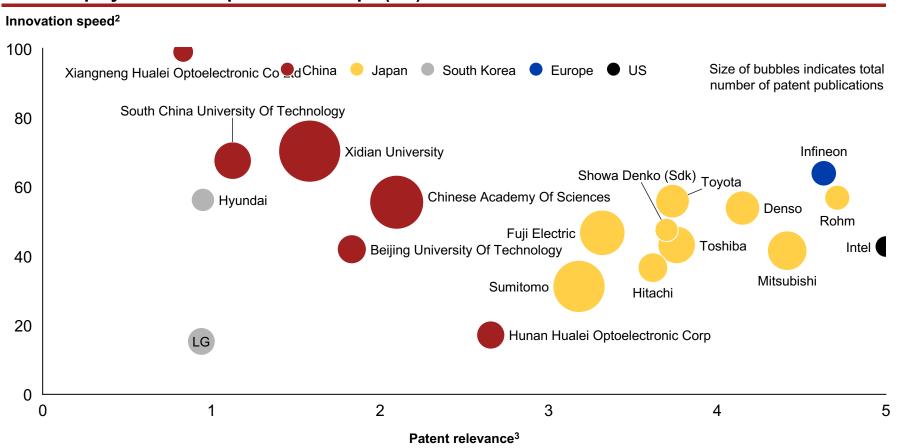
Ratio of new patents per substrate (normed to level of 2012)

- Continuous R&D in SiC and GaN power semiconductors and RF devices by the established players is contributing to the steady number of patents in the last six years
- With an even bigger bandgap, Ga₂O₃ may be the next promising material for efficient power applications
- Number of patents for Ga₂O₃ multiplied after 2015 driven by Chinese institutes and Japanese companies such as Tamura, Toyota, Denso and NGK

Japanese semicon and auto players are dominating SiC publications – established IDMs with low focus on Ga₂O₃

4 Development of WBG related patent filings by substrate of major players

Relevant players in WBG patent landscape (I/II)


	SiC	GaN	Ga ₂ O ₃	Total
Companies		Number of patent fillings from 2012 to 2020		
Sumitomo	493	1 30	7	593
Fuji Electric	403	63	7	452
Mitsubishi	299	6 1	6	342
Toshiba	222	■ 94	2	308
Infineon	1 28	24	1	1 44
ROHM	1 21	34	7	1 39
STMicroelectronics	45	11	1	 53
Sanan IC	42	 55	1	8 1
Wolfspeed	33	12		38
BYD	28	18		44
ON Semiconductor	24	24	1	45
Fujitsu	17	1 75	2	■ 81
Intel	12	■ 90	8	1 03
	1,941	1,523	67	3

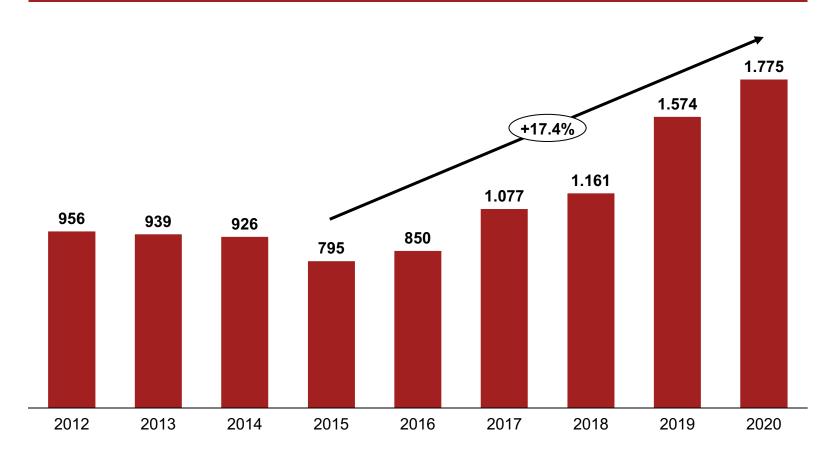
- Japanese IDMs dominate the number of patent filings for SiC power semiconductors
- Intel and Fujitsu are prioritizing GaN research due to their consumer electronics product portfolio
- Established power semiconductor players like STMicro, Infineon, ROHM, and Onsemi have yet to focus on the development of Ga₂O₃

Enterprises file a lower number of WBG patents compared to Chinese universities, but outweigh them in significance

5 WBG patent relevance and innovation speed of major players

Relevant players in WBG patent landscape (II/II)1

- Chinese research institutes contribute significantly to the number of WBG publications
- Conversely, patents of substantial relevance primarily originate from power semiconductor IDMs involved in the automotive and transport sectors
- Intel stands out as an exception, with their GaNrelated patents holding significant relevance in the consumer electronics domain
- Overall, there is a dearth of new players introducing novel solutions to the market


Semicon WBG & Packaging Innovation Strategy&

¹⁾ Only companies with at least 25 patents in the area were considered; 2) Innovation speed: Percentage of published patents in the analysed area since 2017 out of total number of published patents from the company; 3) Patent relevance: Number of times the patents of the company in the analysed area were cited in other patents WBG – Wide-bandgap; SiC – Silicon carbide; GaN – Gallium nitrite

Patents in semicon packaging have grown with a strong CAGR of above 17% between 2015 and 2020

6 Development of semicon packaging related patent filings

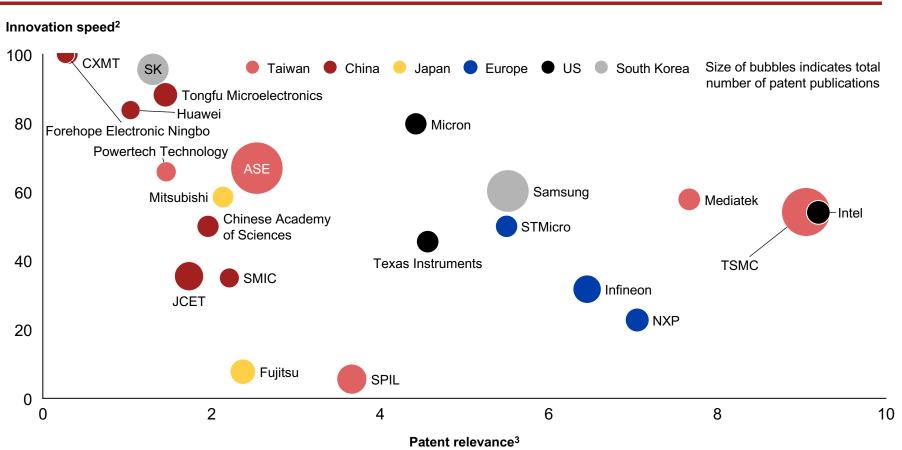
Number of semicon packaging patent filings by year

- The value-add of packaging has increased in the second half of the last decade
- Consequently back-endrelated patent fillings increased and reached alltime high of 1,775 in 2020
- The strong growth over the last 5 years is driven by the demand for smaller, more efficient packages with an increasing number of functionalities
- Advanced packaging is helping to overcome some of the limitations of traditional packaging approaches

Asian players dominate patent volumes in semicon packaging; Western IDMs a bit behind but still with significant efforts

7 Semicon packaging related patent filings of major players

Relevant players in semicon packaging patent landscape (I/II)


Companies	Player type OSAT	Back-end	
		Number of patents from 2012 to 2020	
ASE		535	
TSMC	Foundry	467	
🖏 Samsung	Foundry	355	
SJ Semiconductor	OSAT	206	
SPIL	OSAT	179	
I nfineon	IDM	145	
🚺 Fujitsu	IDM	129	
TongFu ME¹	OSAT	119	
Intel	Foundry	111	
NXP	IDM	101	
Texas Instruments	IDM	101	
Micron	IDM	99	
Mitsubishi	IDM	94	
STMicroelectronics	IDM	88	
Powertech Tech.	OSAT	82	
Amkor Technology	OSAT	44	
Tianshui Huatian	OSAT	22	
JCET	OSAT	4	

- Asian foundries and OSATs are dominating the number of patent filings for semicon packaging
- Particularly, ASE, TSMC, and Samsung are making significant investments in packaging research
- Western IDMs such as Infineon, Intel, NXP, TI, and STMicro are aware that innovation in back-end is gaining more relevance and are actively driving research and development in packaging and testing

Major semicon front-end manufacturers also responsible for most impactful research on semiconductor packaging

8 Semicon packaging patent relevance and innovation speed of major players

Relevant players in semicon packaging patent landscape (II/II)¹

- Despite being responsible for the second highest number of publications, TSMC's patents stand out as some of the most relevant ones in the industry
- Apart from the big foundries and Mediatek, Western IDMs are responsible for the most impactful patent research
- Chinese semiconductor companies excel in swift patent publication rates, but their research has limited impact on industry peers

Semicon WBG & Packaging Innovation Strategy&

Contact us for further discussion

PwC Strategy&

Tanjeff Schadt
Partner
PwC Strategy&
t.schadt@pwc.com

Stan Huley
Senior Associate
PwC Strategy&
stanislav.huley@pwc.com

Freia Lorenz
Associate
PwC Strategy&
freia.lorenz@pwc.com

PATEV

Dr. Edelbert Häfele
CEO
PATEV
edelbert.haefele@patev.de

Dr. Klaus Illgner
Collaboration Partner
PATEV
klaus.illgner.collab@patev.de

Dr. Stefan Hofmann
Former Director
PATEV

